Inertial and rotating coordinates@

Inertial and rotating coordinates@

Before we write the Hamiltonian for the CRTBP, we have to understand that its expression will depend on

  • The frame, and

  • The variables in the frame

Being able to interpret the Hamiltonian’s variables correctly, as well as being comfortable performing coordinate transformations to switch into different representations, will have a lot of value in the long run. So with that, let’s dive in!

Position and velocity@

The most intuitively understandable set of coordinates in any frame is undoubtedly that of position and velocity. As such, converting position/velocity states between the inertial and rotating frames is fundamentally important.

Suppose that the position of a particle is represented in inertial coordinates by \((X,Y,Z)\) and rotating coordinates \((x,y,z)\). The two sets of coordinates are related by

\[\begin{split}\begin{pmatrix}X \\ Y \\ Z\end{pmatrix} = \underbrace{\begin{pmatrix}\cos t & -\sin t & 0 \\ \sin t & \cos t & 0 \\ 0 & 0 & 1\end{pmatrix}}_{\mathbf{R}(t)}\begin{pmatrix}x \\ y \\ z\end{pmatrix}\end{split}\]

Likewise, the inertial velocity \((\dot{X}, \dot{Y}, \dot{Z})\) and rotating velocity \((\dot{x}, \dot{y}, \dot{z})\) are related to each other by simply taking a derivative and applying the chain rule.

\[\begin{split}\begin{pmatrix}\dot{X} \\ \dot{Y} \\ \dot{Z}\end{pmatrix} = \mathbf{R}(t) \begin{pmatrix}\dot{x}-y \\ \dot{y}+x \\ \dot{z}\end{pmatrix}\end{split}\]

Proof

\[\begin{split}\begin{pmatrix}\dot{X} \\ \dot{Y} \\ \dot{Z}\end{pmatrix} &= \frac{d}{dt}\left[\mathbf{R}(t)\begin{pmatrix}x \\ y \\ z\end{pmatrix}\right] \\ &= \dot{\mathbf{R}}(t)\begin{pmatrix}x \\ y \\ z\end{pmatrix} + \mathbf{R}(t)\begin{pmatrix}\dot{x} \\ \dot{y} \\ \dot{z}\end{pmatrix} \\ &= -\mathbf{R}(t)\mathbf{J}\begin{pmatrix}x \\ y \\ z\end{pmatrix} + \mathbf{R}(t)\begin{pmatrix}\dot{x} \\ \dot{y} \\ \dot{z}\end{pmatrix} \\ &= \mathbf{R}(t)\left[-\mathbf{J}\begin{pmatrix}x \\ y \\ z\end{pmatrix} + \begin{pmatrix}\dot{x} \\ \dot{y} \\ \dot{z}\end{pmatrix}\right] \\ &= \mathbf{R}(t) \begin{pmatrix}\dot{x}-y \\ \dot{y}+x \\ \dot{z}\end{pmatrix},\end{split}\]

where \(\mathbf{J}\) is called the symplectic matrix.

\[\begin{split}\mathbf{J} = \begin{pmatrix}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{pmatrix}\end{split}\]

Putting both transformations together, we can relate the entire inertial state \((X, Y, Z, \dot{X}, \dot{Y}, \dot{Z})\) with the rotating state \((x, y, z, \dot{x}, \dot{y}, \dot{z})\) by the following state transformation matrix.

\[\begin{split}\begin{pmatrix}X \\ Y \\ Z \\ \dot{X} \\ \dot{Y} \\ \dot{Z}\end{pmatrix} = \underbrace{\begin{pmatrix}\cos t & -\sin t & 0 & 0 & 0 & 0 \\ \sin t & \cos t & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ -\sin t & -\cos t & 0 & \cos t & -\sin t & 0 \\ \cos t & -\sin t & 0 & \sin t & \cos t & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{pmatrix}}_{\begin{pmatrix}\mathbf{R}(t) & \mathbf{0} \\ \dot{\mathbf{R}}(t) & \mathbf{R}(t)\end{pmatrix}}\begin{pmatrix}x \\ y \\ z \\ \dot{x} \\ \dot{y} \\ \dot{z}\end{pmatrix}\end{split}\]

The other transformation, to the rotating state from the inertial state, is given similarly.

\[\begin{split}\begin{pmatrix}x \\ y \\ z \\ \dot{x} \\ \dot{y} \\ \dot{z}\end{pmatrix} = \underbrace{\begin{pmatrix}\cos t & \sin t & 0 & 0 & 0 & 0 \\ -\sin t & \cos t & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ -\sin t & \cos t & 0 & \cos t & \sin t & 0 \\ -\cos t & -\sin t & 0 & -\sin t & \cos t & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{pmatrix}}_{\begin{pmatrix}\mathbf{R}^T(t) & \mathbf{0} \\ \dot{\mathbf{R}}^T(t) & \mathbf{R}^T(t)\end{pmatrix}}\begin{pmatrix}X \\ Y \\ Z \\ \dot{X} \\ \dot{Y} \\ \dot{Z}\end{pmatrix}\end{split}\]
Comparison between inertial position and rotating position coordinates

Fig. 6 Inertial and rotating position/velocity states@