Before we write the Hamiltonian for the CRTBP, we have to understand that
its expression will depend on
The frame, and
The variables in the frame
Being able to interpret the Hamiltonian’s variables correctly, as well as
being comfortable performing coordinate transformations to switch into different representations,
will have a lot of value in the long run. So with that, let’s dive in!
The most intuitively understandable set of coordinates in any frame is undoubtedly that of position and velocity.
As such, converting position/velocity states between the inertial and rotating frames is fundamentally important.
Suppose that the position of a particle is represented in inertial coordinates by \((X,Y,Z)\) and rotating coordinates \((x,y,z)\).
The two sets of coordinates are related by
\[\begin{split}\begin{pmatrix}X \\ Y \\ Z\end{pmatrix} = \underbrace{\begin{pmatrix}\cos t & -\sin t & 0 \\ \sin t & \cos t & 0 \\ 0 & 0 & 1\end{pmatrix}}_{\mathbf{R}(t)}\begin{pmatrix}x \\ y \\ z\end{pmatrix}\end{split}\]
Likewise, the inertial velocity \((\dot{X}, \dot{Y}, \dot{Z})\) and rotating velocity \((\dot{x}, \dot{y}, \dot{z})\) are related to each other by simply taking a derivative and applying the chain rule.
Putting both transformations together, we can relate the entire inertial state \((X, Y, Z, \dot{X}, \dot{Y}, \dot{Z})\) with the rotating state \((x, y, z, \dot{x}, \dot{y}, \dot{z})\) by the following state transformation matrix.
\[\begin{split}\begin{pmatrix}X \\ Y \\ Z \\ \dot{X} \\ \dot{Y} \\ \dot{Z}\end{pmatrix} = \underbrace{\begin{pmatrix}\cos t & -\sin t & 0 & 0 & 0 & 0 \\ \sin t & \cos t & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ -\sin t & -\cos t & 0 & \cos t & -\sin t & 0 \\ \cos t & -\sin t & 0 & \sin t & \cos t & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{pmatrix}}_{\begin{pmatrix}\mathbf{R}(t) & \mathbf{0} \\ \dot{\mathbf{R}}(t) & \mathbf{R}(t)\end{pmatrix}}\begin{pmatrix}x \\ y \\ z \\ \dot{x} \\ \dot{y} \\ \dot{z}\end{pmatrix}\end{split}\]
The other transformation, to the rotating state from the inertial state, is given similarly.
\[\begin{split}\begin{pmatrix}x \\ y \\ z \\ \dot{x} \\ \dot{y} \\ \dot{z}\end{pmatrix} = \underbrace{\begin{pmatrix}\cos t & \sin t & 0 & 0 & 0 & 0 \\ -\sin t & \cos t & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ -\sin t & \cos t & 0 & \cos t & \sin t & 0 \\ -\cos t & -\sin t & 0 & -\sin t & \cos t & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{pmatrix}}_{\begin{pmatrix}\mathbf{R}^T(t) & \mathbf{0} \\ \dot{\mathbf{R}}^T(t) & \mathbf{R}^T(t)\end{pmatrix}}\begin{pmatrix}X \\ Y \\ Z \\ \dot{X} \\ \dot{Y} \\ \dot{Z}\end{pmatrix}\end{split}\]
Fig. 6 Inertial and rotating position/velocity states@